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ASSIMILATING LEAF AREA INDEX ESTIMATES FROM REMOTE SENSING

INTO THE SIMULATIONS OF A CROPPING SYSTEMS MODEL

K. R. Thorp,  D. J. Hunsaker,  A. N. French

ABSTRACT. Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and
farm-level precision management has been limited by the vast model input requirements and the model sensitivity to
parameter uncertainty. Remote sensing has been proposed as a viable source of spatial information for guiding model
simulations, but techniques for merging remote sensing with cropping systems models have not been rigorously explored. We
developed and tested two techniques for assimilation of remotely sensed green leaf area index (GLAI) into the
CSM-CROPSIM-CERES-Wheat model: one based on model “updating” and the other based on model “forcing”. A dataset
from two wheat irrigation scheduling experiments, conducted at Maricopa, Arizona, during the winters of 2003-2004 and
2004-2005, provided canopy spectral reflectance information and measurements of canopy weight, wheat yield, and
evapotranspiration (ET) under varying planting densities and nitrogen rates for testing the ability of the assimilation
techniques to improve model simulations. Monte Carlo simulation methods were used to assess the performance of GLAI data
assimilation in light of uncertainty in the model parameters that govern the GLAI simulation. When considering this
uncertainty, assimilation of GLAI by “updating” and by “forcing” was able to reduce error between measured and simulated
canopy weight and ET by 43.6% and 56.5% and by 45.0% and 51.6%, respectively, as compared to the stand-alone model.
The assimilation techniques had greater difficulty improving wheat yield simulations because simulated yield was more
sensitive to parameters other than GLAI, especially in the 2004-2005 growing season. Assimilation of remotely sensed data
into cropping systems models has potential to improve simulations of key model outputs, such as canopy weight and ET, but
further efforts are warranted to explore and fine-tune techniques for merging these two technologies.

Keywords. Biomass, CERES-Wheat, Crop model, Data assimilation, DSSAT, Evapotranspiration, Leaf area index, Monte
Carlo, Remote sensing, Yield, Wheat.

emote sensing and cropping systems modeling are
two distinct technologies that have been devel‐
oped to address diverse agronomic questions at
field-level and regional scales (Whisler et al.,

1986; Moran et al., 1997; Batchelor et al., 2002; Xie et al.,
2008). Although these technologies have often been studied
independently, there is growing interest in utilizing informa‐
tion derived from remote sensing to update or drive cropping
systems model simulations because the two technologies are
naturally complementary (Maas, 1988a; Moulin et al., 1998;
Inoue, 2003; Dorigo et al., 2007). For example, whereas the
daily time-step simulation capabilities of cropping systems
models are excellent for crop growth analyses in the temporal
domain, remote sensing images offer great opportunity to un‐
derstand spatial crop growth patterns. Conversely, whereas
model input requirements have limited the use of cropping
systems models for spatial crop growth analyses, several
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practical problems, including cloud cover and flight avail‐
ability, have limited the reliability of remote sensing as a tem‐
poral crop analysis tool. With the integration of these
technologies,  the problems associated with one can be offset
by the benefits of the other.

Several techniques for merging remote sensing data with
model simulations, known collectively as “data assimila‐
tion” procedures, have been explored in past research. Sim‐
ple approaches have utilized vegetation indices to update the
value of key model state variables, such as green leaf area in‐
dex (GLAI) or leaf weight, during the progression of seasonal
simulations (Wiegand et al., 1986, Seidl et al., 2004; Hadria
et al., 2006). Iterative techniques using optimization algo‐
rithms have also been used to “reinitialize” or “reparameter‐
ize” a model by adjusting initial conditions or input
parameters to minimize error between simulated GLAI and
remotely sensed estimates of GLAI (Maas, 1988b; Bouman,
1992; Clevers and van Leeuwen, 1996; Dente et al., 2008).
In a similar way, linking a cropping systems model with a
radiation transfer or canopy reflectance model allows recal‐
ibration procedures to be completed by directly comparing
simulated and measured canopy reflectance (Moulin et al.,
1995; Guérif and Duke, 1998; Weiss et al., 2001; Launay and
Guerif, 2005). In most of the reported approaches for assimi‐
lating remote sensing data into cropping systems models, the
authors have not accounted for measurement error in the re‐
motely sensed estimates of model state variables (Seidl et al.,
2004; Dente et al., 2008). More advanced data assimilation
approaches, which implement ensemble Kalman filters to
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combine simulated and observed state variables while ac‐
counting for the error in both, are also under development
(Dorigo et al., 2007; Quaife et al., 2008).

The union of remote sensing and cropping systems model‐
ing has been investigated for a diverse set of agricultural ap‐
plications, including regional crop monitoring and yield
prediction (Doraiswamy et al., 2004; Dente et al., 2008), pre‐
cision crop management (Jones and Barnes, 2000; Seidl et
al., 2004), and evapotranspiration mapping (Olioso et al.,
2005). Because of the spatial nature of these applications, ef‐
forts to parameterize a cropping systems model for spatial
simulations may be limited by a lack of information to de‐
scribe the required cultivar, management, soil, and meteoro‐
logical inputs for unique spatial units. This uncertainty in the
model input parameters may degrade the predictive perfor‐
mance of the model, which data assimilation procedures aim
to correct by periodically readjusting the simulation using
spatial information from remote sensing images. Although
this approach may sound reasonable for addressing the issue
of limited model input data for spatial simulations, further
evaluation efforts using thorough measured datasets are war‐
ranted to understand the feasibility of using remote sensing
data to reliably update cropping systems model simulations.

The CSM-CROPSIM-CERES-Wheat model is one of
the plant growth modules within the Cropping System Model
(CSM ver. 4.5.0.036; Jones et al., 2003), as provided in the
Decision Support System for Agrotechnology Transfer
(DSSAT). Current and previous versions of this wheat (Triti‐
cum aestivum L.) growth model have been widely used to
simulate the collective effect of cultivar characteristics, man‐
agement practices, weather, and soil conditions on the
growth, development, and yield of wheat plants, and the
model has been shown to perform adequately for a wide
selection of wheat varieties, climatic conditions, and soil
types around the world (Chipanshi et al., 1999; Tubiello et al.,
1999; Bannayan et al., 2003; Nain et al., 2004; Rinaldi, 2004;
Lobell and Ortiz-Monasterio, 2006; Arora et al., 2007). Re‐
cently, Thorp et al. (2010) reported an evaluation of the
CSM-CROPSIM-CERES-Wheat  model using a thorough
measured dataset from two wheat irrigation scheduling ex‐
periments conducted during the winters of 2003-2004 and
2004-2005 at Maricopa, Arizona. As a part of the data collec‐
tion protocol for these experiments, treatment plots were in‐
tensively monitored using ground-based and aerial remote
sensing in the thermal, visible, and near-infrared wave‐
lengths. The measured dataset is ideal for testing approaches
to assimilate remotely sensed information into CSM-CROP‐
SIM-CERES-Wheat  simulations. The objectives of this
study were: (1) to develop strategies for assimilating remote‐
ly sensed estimates of GLAI into the CSM-CROPSIM-
CERES-Wheat model, and (2) to demonstrate the ability of
the data assimilation strategies to improve model simulations
of canopy weight, wheat yield, and evapotranspiration (ET)
in light of uncertainty in the model input parameters that gov‐
ern GLAI.

MATERIALS AND METHODS
FIELD EXPERIMENTS

As reported by Hunsaker et al. (2007a, 2007b), ET estima‐
tion and irrigation scheduling experiments for wheat were
conducted at the University of Arizona's Maricopa Agricul-

Table 1. Summary of subtreatments for the 2003-2004 and 2004-2005
FAO-56 irrigation scheduling experiments (FISE) for wheat.

Subtreatment
Abbreviation

Experimental Variables

No. of
Replicates

Kcb
Method

Plant
Density

Nitrogen
Level

FSH FAO (F) Sparse (S) High (H) 2
FSL FAO (F) Sparse (S) Low (L) 2
FTH FAO (F) Typical (T) High (H) 4
FTL FAO (F) Typical (T) Low (L) 4
FDH FAO (F) Dense (D) High (H) 2
FDL FAO (F) Dense (D) Low (L) 2
NSH NDVI (N) Sparse (S) High (H) 2
NSL NDVI (N) Sparse (S) Low (L) 2
NTH NDVI (N) Typical (T) High (H) 4
NTL NDVI (N) Typical (T) Low (L) 4
NDH NDVI (N) Dense (D) High (H) 2
NDL NDVI (N) Dense (D) Low (L) 2

tural Center (MAC) near Maricopa, Arizona (33.067547° N,
111.97146° W) during the winters of 2003-2004 and
2004-2005. The soil type at the site was a Casa Grande sandy
loam, classified as fine-loamy, mixed, hyperthermic, Typic
Natrargids. The original objective for the research of Hun‐
saker et al. (2007a, 2007b) was to determine whether vegeta‐
tion indices computed from canopy spectral reflectance
measurements could be used to estimate basal crop coeffi‐
cients (Kcb) required to compute crop ET and to schedule ir‐
rigations using FAO-56 methods (Allen et al., 1998). For
both wheat experiments, the field layout consisted of 32 ex‐
perimental  plots, each 11.2 × 21 m and hydrologically iso‐
lated with border dikes. The main treatment consisted of two
approaches for estimation of basal crop coefficients: one us‐
ing a standard FAO-56 crop coefficient curve (F) as a func‐
tion of days after emergence, and the other using a
season-specific crop coefficient curve (N) based on remote
sensing estimates of GLAI from normalized difference vege‐
tation indices (NDVI). Subtreatments of plant density and ni‐
trogen application rate were equally replicated within each
main treatment to provide a range of crop growth and water
use conditions (table 1). Three plant density levels, desig‐
nated as sparse (S; ~75 plant m-2), typical (T; ~150 plants
m-2), and dense (D; ~300 plants m-2), were used. Nitrogen
fertilizer was injected into irrigation pipes at two rates, giving
seasonal nitrogen applications of ~80 kg N ha-1 for the low
(L) treatment and ~215 kg N ha-1 for the high (H) treatment.
A complete random design with incomplete blocks was used.

Hard red spring wheat (Triticum aestivum L., cv. Yecora
Rojo) was planted at a 0.20 m row spacing on 10-12 Decem‐
ber 2003 and on 22 December 2004. Irrigation border dikes
were formed around each treatment plot, and raised board‐
walks on concrete blocks were installed for non-destructive
access across the center of each plot. Two gated pipe irriga‐
tion lines were installed to flood irrigate individual treatment
plots. Irrigation scheduling procedures based on the two
scheduling approaches were initiated in early February for
both seasons. Irrigations were scheduled for the day after soil
water balance calculations demonstrated 45% depletion from
total available root zone soil water. Applied irrigation
amounts were 110% of depleted root zone soil water, where
the extra 10% was to account for inefficiencies in the irriga‐
tion system. Nitrogen fertilizer was applied to each treatment
plot by injecting 32% liquid urea ammonium nitrate into the
gated pipe irrigation system.
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FIELD MEASUREMENTS
Volumetric soil water contents were measured frequently

at the center of each treatment plot. Neutron probes (model
503, Campbell Pacific Nuclear, Martinez, Cal.) were used to
measure the soil moisture profile from 30 to 290 cm in 20 cm
increments,  and TDR probes (Trase1, Soil-Moisture Equip‐
ment Corp., Santa Barbara, Cal.) were used to measure soil
moisture from the surface to a depth of 30 cm. Soil moisture
measurements were collected at least weekly and always one
day before and three to four days after an irrigation event.
These soil moisture data were used to estimate the deep seep‐
age and ET that occurred between soil moisture measurement
dates based on the soil water balance method described by
Hunsaker et al. (2005). Since model simulations were con‐
ducted to a depth of 210 cm in this study, neutron probe mea‐
surements from 210 cm to 290 cm were used to obtain an
estimate of deep seepage. Actual ET was then computed by
subtracting deep seepage from the total precipitation, irriga‐
tion, and change in soil water storage between soil moisture
measurement dates.

Extensive agronomic measurements were collected to
document wheat growth, development, and yield in each
treatment plot. After wheat establishment, plant density mea‐
surements were collected to verify acceptability of the three
plant density treatments. Phenology was documented weekly
using the Zadoks et al. (1974) scale. Every two weeks follow‐
ing emergence, destructive plant sampling was used to mea‐
sure various aspects of wheat growth, including canopy
weight, leaf number, leaf weight, stem weight, spike weight,
chaff weight, and grain weight. The green leaf area of dis‐
sected plant samples was measured using an area meter
(model 3100, Li-Cor, Lincoln, Neb.), and green leaf area in‐
dex was computed based on leaf area and plant density at
emergence. On 26 May 2004 and 27 May 2005, a Hege plot
combine (Wintersteiger AG, Ried im Innkreis, Austria)
equipped with a 1.5 m cutter bar was used to collect grain
samples from a 24 m2 sample area delineated in the southern
portion of each treatment plot.

Studies to characterize the physical properties of the soil
at the field site were carried out in the spring of 2008, several
years after the original field study. GPS navigation was used
to collect soil samples at the original location of the 32 neu‐
tron access tubes. Laboratory analysis of these samples pro‐
vided soil texture information for characterizing soil water
retention and conductivity parameters. During both experi‐
ments, meteorological data was collected from an Arizona
Meteorological  Network (AZMET, http://cals.arizona.edu/
azmet/) station located approximately 100 m north of the
study area.

CANOPY REFLECTANCE MEASUREMENTS

Ground-based radiometric measurements were collected
over each treatment plot two to four times per week from
emergence to harvest using a four-band, hand-held radiome‐
ter (model BX-100, Exotech, Inc., Gaithersburg, Md.). The
instrument was equipped with 15° field-of-view optics and
positioned at a nadir view angle approximately 1.5 to 2.0 m
above the soil surface. Data collection occurred in the morn‐
ing around the time of a 57° solar zenith angle. Using board‐
walks for non-destructive plot access, 24 radiometric
measurements of the crop canopy were collected along a 6 m
east-west transect across the middle of each plot. Frequent
radiometric observations of a calibrated, 0.6 m2, 99% Spec‐

tralon reflectance panel (Labsphere, Inc., North Sutton,
N.H.) were used to characterize solar irradiance throughout
the data collection period. Canopy reflectance factors in the
red (610 to 680 nm) and near-infrared (NIR; 790 to 890 nm)
were computed as the ratio of the average canopy radiance
over the corresponding time-interpolated value for solar irra‐
diance. The NDVI was computed from reflectance factors us‐
ing the well-known equation:
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Canopy reflectance measurements were available for com‐
puting NDVI on 29 and 31 dates during the 2003-2004 and
2004-2005 growing seasons, respectively.

The methods of Choudhury et al. (1994) were used to esti‐
mate wheat canopy cover and GLAI from the NDVI data col‐
lected during these experiments. Fractional vegetation cover
(f) was computed from NDVI using:
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where NDVI measurements are rescaled according to the
bare soil index (NDVImin) and the full vegetation cover index
(NDVImax). The parameter � is a function of canopy leaf
angle distribution with values near 1.4 for erectophile cano‐
pies and near 0.8 for planophile canopies. The GLAI was then
computed from f according to:
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where � is a second function of leaf angle distribution that
ranges from 0.42 to 0.91. Based on the results of French et al.
(2007), who used the measured GLAI and NDVI data from
the 2004-2005 wheat experiment to parameterize these
equations, we used values of 1.85 for � and 0.716 for � in all
computations of GLAI from NDVI in the present study. For
NDVImin and NDVImax, we used 0.10 and 0.94, respectively.

CSM-CROPSIM-CERES-WHEAT

CSM-CROPSIM-CERES-Wheat is a computer program
that utilizes carbon, nitrogen, and water balance principles to
simulate the processes that occur during the growth and de‐
velopment of wheat plants within an agricultural system. The
model calculates crop growth and development within a ho‐
mogeneous area on a daily time step. Crop development pro‐
ceeds through nine growth stages based on heat unit
accumulation  from planting to harvest. Carbon fixation is
computed as a function incoming solar radiation, leaf area in‐
dex, plant population, the canopy extinction coefficient, and
radiation use efficiency. Fixed carbon is then partitioned to
various plant parts, including leaves, stems, spikes, chaff,
grain, and roots. Simulated plant growth responds to varia‐
tion in management practices, crop cultivars, soil properties,
and meteorological conditions. Management inputs required
for model execution include plant population, row spacing,
seed depth, planting and harvest dates, fertilizer application
amounts and dates, and irrigation application amounts and
dates. Cultivar parameters are used to define vernalization re‐
quirements, daylength sensitivity, radiation use efficiency,
heat units needed to progress through growth stages, and
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growth potentials for specific plant parts. Soils are defined by
their water retention and conductivity characteristics, bulk
density, pH, and initial conditions for water, inorganic nitro‐
gen, and organic carbon. Daily inputs for minimum and max‐
imum temperature, dew point temperature, solar radiation,
wind run, and precipitation are also required. The model sim‐
ulates plant stress effects from deficit and excess water condi‐
tions and from deficit nitrogen conditions, which feedback on
the daily plant growth simulation.

A thorough evaluation of the CSM-CROPSIM-CERES-
Wheat model for our wheat irrigation scheduling experi‐
ments was recently completed using all field measurements
with exception of the canopy reflectance information (Thorp
et al., 2010). Model calibration involved adjustment of culti‐
var parameters (table 2) to improve simulations of the aver‐
age crop development, growth, and yield responses for the six
standard FAO-56 treatments only. A single set of soil param‐
eters (table 3) was specified to simulate the field-average soil
moisture conditions for all standard FAO-56 treatments,
which received identical irrigations. Based on the measure‐
ments of soil texture at the site, soil water retention and con‐
ductivity parameters were obtained from the Rosetta
pedotransfer functions (Schaap et al., 2001). Data from the
2004-2005 experiment were used for model calibration,
while data from the 2003-2004 experiment were used for in‐
dependent model testing. The simulation controls, initial
conditions, and input parameters resulting from the model
evaluation (Thorp et al., 2010) were used as the baseline for
simulations in the present study. As discussed below, further
parameter adjustments using Monte Carlo methods were
used to assess the performance of GLAI data assimilation
techniques in light of uncertainty in several parameters that
affect the calculation of GLAI.

DATA ASSIMILATION STRATEGIES

Assimilation of GLAI into the CSM-CROPSIM-
CERES-Wheat model is expected to influence the crop
growth simulation because the GLAI state variable is used to
calculate the fraction of photosynthetically active radiation
intercepted by the plant canopy (PARI). The equation used by
the model to calculate daily PARI is:

 ( )( )AWNAIGLAIKCAN0.1PARI +⋅−−= e  (4)

where KCAN is the light extinction coefficient for photosyn‐
thetically active radiation, and AWNAI is the awn area index.
The PARI state variable is then used in the daily rate equa‐
tions to compute potential carbon fixation (PCARB,
g�plant-1) according to:

 PARI
PLTPOP

PARAD
PARUVPCARB ⋅⎟

⎠
⎞⎢

⎝
⎛⋅=  (5)

where PARUV (g MJ-1) is the radiation use efficiency during
vegetative development, PARAD (MJ m-2) is the photosyn‐
thetically active radiation in the canopy (a function of the dai‐
ly incoming solar radiation), and PLTPOP (plant m-2) is the
plant population. The radiation use efficiency can be speci‐
fied uniquely during vegetative and reproductive develop‐
ment, so the input parameter for radiation use efficiency
during reproductive development, PARUR (g MJ-1), re‐
places PARUV in equation 5 during the reproductive phase
(table 2). Actual carbon fixation for the plant system is then

Table 2. Calibrated cultivar parameters for
the experimental dataset (Thorp et al., 2010).

Parameter Description Value

Crop Development
PEG Duration of phase from planting to germination

(°C d cm cm‐1)[a]
75

PECM Duration of phase from germination to
emergence (°C d cm‐1)[a]

35

P1 Duration of phase from emergence to double
ridges (°C d)[b]

400

P1D Percentage reduction in development rate in a
photoperiod 10 h shorter than the threshold
relative to that at the threshold[a]

12

P1V Days at optimum vernalizing temperature
required to complete vernalization[c]

5

P2 Duration of phase from double ridges to the
end of leaf growth (°C d)[a]

350

P3 Duration of phase from the end of leaf growth
to the end of spike growth (°C d)[a]

150

P4 Duration of phase from the end of spike growth
to the end of the grain fill lag (°C d)[a]

400

P5 Duration of the grain filling phase (°C d)[a] 430

PHINT Interval between successive leaf tip
appearances (°C d)[a]

105

TI1LF Leaf number at which tillering begins[a] 1.5

Crop Growth
PARUV Conversion rate from photosynthetically active

radiation to dry matter before the end of leaf
growth (g MJ‐1)[a]

2.2

PARUR Conversion rate from photosynthetically active
radiation to dry matter ratio after the end of leaf
growth (g MJ‐1)[a]

2.4

LAVS Potential area of first‐phase leaves (cm2)[a] 25

LARS Potential area of second‐phase leaves (cm2)[a] 50

LAWRS Laminar area to weight ratio of first‐phase
leaves (cm2 g‐1)[b]

250

LAWR2 Laminar area to weight ratio of second‐phase
leaves (cm2 g‐1)[b]

230

Crop Yield
G1 Kernel number per unit canopy weight at

anthesis (kernels g‐1)[a]
20

G2 Standard kernel size under optimum conditions
(mg)[a]

54

G3 Standard, non‐stressed dry weight of a single
tiller at maturity (g)[b]

1.5

RSFRS Fraction of fixed carbon partitioned to reserves
prior to the end of stem growth[a]

0.12

GRNMN Minimum grain nitrogen concentration (%)[a] 2.0

GRNS Standard grain nitrogen concentration (%)[a] 3.0
[a] Parameter adjusted to improve measured versus simulated

relationships.
[b] Parameter value selected from a subset of default values.
[c] Parameter value based on the results of Tubiello et al. (1999).

computed by reducing PCARB according to the current lev‐
els of temperature, water, and nitrogen stress. Based on equa‐
tions 4 and 5, we expect the assimilation of remotely sensed
estimates of GLAI to aid model simulations of total canopy
weight. Crop yield simulations may also be improved, al‐
though many other parameters unrelated to the GLAI state
variable are involved in the simulation of carbon partitioning
and translocation of carbon to grain.
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Table 3. Soil parameters obtained from the experimental dataset (Thorp et al., 2010).[a]

Depth
(cm)

SLLL
(cm cm‐1)

SDUL
(cm cm‐1)

SSAT
(cm cm‐1)

SRGF
(‐‐)

SSKS
(cm h‐1)

SBDM
(g cm‐3)

SLOC
(%)

SLCL
(%)

SLSI
(%)

SLHW
(‐‐)

SCEC
(cmol kg‐1)

0‐5 0.093 0.226 0.407 1.000 1.5 1.49 0.58 21.0 10.8 8.3 12.0
5‐15 0.093 0.226 0.407 1.000 1.5 1.49 0.58 21.0 10.8 8.3 12.0
15‐30 0.093 0.226 0.407 1.000 1.5 1.49 0.58 21.0 10.8 8.3 12.0
30‐45 0.099 0.228 0.435 0.657 2.0 1.40 0.17 22.6 10.8 8.3 12.0
45‐60 0.103 0.249 0.431 0.432 1.9 1.42 0.17 24.1 10.7 8.3 12.0
60‐90 0.106 0.251 0.399 0.186 1.2 1.53 0.17 24.0 12.5 8.3 12.0

90‐120 0.098 0.247 0.382 0.080 1.0 1.58 0.17 21.4 11.8 8.3 12.0
120‐150 0.078 0.234 0.377 0.035 1.7 1.58 0.17 16.9 9.2 8.3 12.0
150‐180 0.088 0.221 0.380 0.015 1.3 1.58 0.17 19.2 9.4 8.3 12.0
180‐210 0.088 0.251 0.380 0.006 1.3 1.58 0.17 19.2 9.4 8.3 12.0

[a] SLLL = lower limit, SDUL = drained upper limit, SSAT = saturated soil water content, SRGF = soil root growth factor, 
SSKS = saturated hydraulic conductivity, SBDM = bulk density, SLOC = organic carbon content, SLCL = clay content, 
SLSI = silt content, SLHW = pH in water, and SCEC = cation exchange capacity.

Assimilation of remotely sensed GLAI estimates into the
CSM-CROPSIM-CERES-Wheat model is also expected to
influence the water balance simulation because the GLAI
state variable is used to calculate potential ET. Several meth‐
ods are available for computing ET in the CSM, but we im‐
plemented the method based on modified FAO-56
procedures (Allen et al., 1998). With this method, the model
uses the standard FAO-56 equations to compute daily refer‐
ence ET (ETo, mm d-1) from the meteorological input data,
and potential ET (PET, mm d-1) is computed using a crop co‐
efficient (Kc) approach:

 ( ) oc ETKPET =  (6)

The model then simulates actual ET to the extent that the sim‐
ulated soil water supply can meet the PET demand and that
the simulated plant system is able to extract and transpire that
amount of water. The GLAI state variable influences PET,
and thus actual ET, through its use in the calculation of Kc:

 ⎟
⎠
⎞⎢

⎝
⎛⋅−+=

6.0
GLAI

1.0)(EORATIO1.0Kc  (7)

where EORATIO is a scaling parameter for adjusting the rela‐
tionship between model-simulated GLAI and Kc. As re‐
ported by Thorp et al. (2010), the EORATIO parameter was
calibrated to a value of 1.8 based on the experimental data.

Two strategies for assimilating GLAI data into CSM-
CROPSIM-CERES-Wheat  were considered in this work:
one based on “updating” and the other based on “forcing” the
GLAI state variable. The “updating” method adjusts the
model only on the dates when GLAI observations are avail‐
able. The “forcing” method adjusts the model on a daily time
step using linear interpolation to compute GLAI between
measurement dates. Assimilation of GLAI observations into
the model simulation is more complex than simply overwrit‐
ing the GLAI state variable because the daily growth rate
equations are fundamentally focused at the individual plant
level, while GLAI is an area-based variable. After comput‐
ing daily growth for individual plants, the plant component
weights are computed on an area basis using the plant popula‐
tion parameter, and GLAI is computed from the more funda‐
mental plant leaf area (PLA, cm2 plant-1) state variable
according to:

 ( ) 0.0001PLTPOPSENLAPLAGLAI ⋅⋅−=  (8)

where SENLA (cm2 plant-1) is the total leaf area that has been
senesced from the plant, and PLTPOP (plants m-2) is the plant
population. To drive the model based on remotely sensed
GLAI estimates, the model was reprogrammed to complete
the following basic steps after it finished daily growth rate
calculations:

� Read a file containing the remotely sensed GLAI ob‐
servations.

� Compute (PLA-SENLA)sim as simulated by the mod‐
el.

� Back-calculate (PLA-SENLA)obs by plugging the re‐
motely sensed GLAI observation into equation 8.

� Compute the deficit plant leaf area: DEFICIT = (PLA-
SENLA)obs - (PLA-SENLA)sim.

� Adjust the PLA state variable by DEFICIT.
These steps effectively adjust the PLA state variable in the
model such that GLAI is later computed (eq. 8) as the GLAI
observed with remote sensing. Adjustment of the more fun‐
damental PLA state variable ensures that the effects of the
data assimilation are not lost during the growth rate calcula‐
tions at the individual plant level on the following time step.

DATA ASSIMILATION EVALUATION

Although the model calibration described by Thorp et al.
(2010) was based on extensive measured datasets obtained
through field experimentation, simplifying assumptions in
the model design and measurement error ultimately led to un‐
certainty in the model parameterization. Furthermore, re‐
mote sensing data assimilation will likely be most useful for
applications in which a cropping systems model is extrapo‐
lated spatially at a field-level or regional scale, and detailed
measured datasets will likely not be available for thorough
calibration of a spatially extrapolated model. This would lead
to even greater uncertainty in the model parameterization for
the unique spatial units. Since the aim of remote sensing data
assimilation is to correct for simulation errors that result from
model parameter uncertainty, it is important to consider the
effects of this uncertainty on the performance of the data as‐
similation strategies.

An analysis of model parameter uncertainty can be per‐
formed by first defining a probability distribution to describe
the probable values for each model input parameter of inter‐
est. Parameter values are then iteratively and independently
sampled from these distributions using Monte Carlo sam‐
pling techniques, which rely on a random number generator
to computationally randomize the selection. Running the
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cropping systems model for each sampled parameter set then
demonstrates how the model outputs respond to the uncer‐
tainty in the model inputs (Monod et al., 2006).

To evaluate remotely sensed GLAI data assimilation
while considering model parameter uncertainty in this work,
Monte Carlo methods were used to randomly draw model pa‐
rameter values from a normal distribution with mean equal
to the calibrated value for several parameters. According to
equation 8, GLAI is mainly affected by the plant population
(PLTPOP) input parameter and the plant leaf area (PLA) state
variable. The PLA state variable is mainly affected by the
cultivar parameters that govern leaf growth (table 2), includ‐
ing the potential leaf areas (LAVS and LARS) and the lami‐
nar leaf area to leaf weight ratios (LAWRS and LAWR2).
Monte Carlo methods were used to test the ability of GLAI
data assimilation to improve model simulations while con‐
sidering uncertainty in these model input parameters. Based
on prior sensitivity analyses with the model, the standard
deviations of the normal distributions from which the cultivar
parameter values were drawn were specified as 3.0 cm2 for
LAVS and LARS and 20 cm2 g-1 for LAWRS and LAWR2
(table 4). Standard deviations of the normal distributions
from which PLTPOP parameters were drawn were based on
variability in plant density measurements from emergence
counts and biomass samples for each of the three planting
densities in each season.

Using Monte Carlo methods, model simulations were per‐
formed for 10,000 unique sets of parameters. For each param‐
eter set, simulations were completed for the six standard
FAO-56 treatments (table 1) for both seasons of wheat irriga‐
tion scheduling experiments. For each of these twelve model
runs, simulations were completed using GLAI data assimila‐
tion by the “updating” method, using GLAI data assimilation
by the “forcing” method, and using no GLAI data assimila‐
tion. Simulation results for final canopy weight, wheat yield,
and ET from emergence to physiological maturity were com‐
piled. Simulated GLAI was also characterized by computing
the GLAI integral (area under the curve) for each simulation.

Table 4. Definition of normal distributions from which parameter
values were randomly drawn for Monte Carlo simulations.

Parameter Description Mean SD[a]

LAVS Potential area of first‐phase leaves
(cm2)

25.0 3.0

LARS Potential area of second‐phase leaves
(cm2)

50.0 3.0

LAWRS Laminar area to weight ratio of first‐
phase leaves (cm2 g‐1)

250.0 20.0

LAWR2 Laminar area to weight ratio of
second‐phase leaves (cm2 g‐1)

230.0 20.0

PLTPOP‐S04 Sparse plant population for
2003‐2004 season (plants m‐2)

84.0 18.4

PLTPOP‐T04 Typical plant population for
2003‐2004 season (plants m‐2)

164.0 33.0

PLTPOP‐D04 Dense plant population for
2003‐2004 season (plants m‐2)

306.0 38.1

PLTPOP‐S05 Sparse plant population for
2004‐2005 season (plants m‐2)

75.0 12.9

PLTPOP‐T05 Typical plant population for
2004‐2005 season (plants m‐2)

155.0 32.7

PLTPOP‐D05 Dense plant population for
2004‐2005 season (plants m‐2)

306.0 55.4

[a] SD = standard deviation.

A Python script (www.python.org) was written to automate
the entire Monte Carlo simulation procedure.

RESULTS AND DISCUSSION
GLAI ESTIMATION FROM NDVI

As compared to measurements of GLAI from biomass
samples for the standard FAO-56 treatments at the site, GLAI
was estimated from NDVI with RMSEs of 0.47 and 0.41 for
the 2003-2004 and 2004-2005 wheat growing seasons, re‐
spectively (fig. 1). This result demonstrates a relationship be‐
tween the measured and NDVI-estimated GLAI values,
although it is important to note the limitations of each of these
methods for determining GLAI. Direct measurement of
GLAI is labor-intensive, slow, and intrusive, and appropriate
plant sampling techniques are required for precise measure‐
ments (Tewolde et al., 2005). Our GLAI measurements were
based on the leaf area of six median-sized plants sampled
from two 0.5 m row lengths. Clearly, the ability of these six
plants to represent the GLAI status of the entire treatment plot
on a particular measurement date may be questionable. The
GLAI computation from the leaf area of the six plants was
also highly sensitive to the plant density, which could vary
depending on which biomass sample was used to determine
the plant density. Ultimately, the plant counts collected at
emergence were used to estimate the plant density of each
plot for computation of GLAI on all biomass sampling dates.
These limitations of the direct GLAI measurement approach
were circumvented by estimating GLAI from NDVI mea‐
surements. Since reflectance scans were collected over a rel‐
atively large area of crop canopy each time, the
NDVI-estimated GLAI are potentially more representative
of the actual plot-level GLAI status. On the other hand, crop
canopy reflectance data are known to be sensitive to a variety
of factors, including solar zenith angle, atmospheric condi‐
tions, soil background effects, instrument limitations, and
data calibration techniques. Additional error can certainly re‐
sult from the assumptions of the empirical relationships used
to produce GLAI from the NDVI measurements (eqs. 2 and
3).

For many of the treatments, the seasonal GLAI time-se‐
ries as estimated from the NDVI measurements (fig. 2b) was
typically smoother than the GLAI time-series based on bio‐
mass measurements (fig. 2a). This characteristic tended to fa‐
cilitate the assimilation of the NDVI-estimated GLAI into
the cropping systems model, without extreme disruption of
the simulation progression due to unrealistic jumps in the as‐
similated GLAI values. In comparing the “updating” and
“forcing” data assimilation methods, the resulting difference
in simulated GLAI was often quite small when assimilating
the NDVI-estimated GLAI (fig. 2b). Assimilating the mea‐
sured GLAI values often resulted in a substantial difference
between the simulated GLAI under the “updating” and “forc‐
ing” methodologies as well as several unrealistic discontinui‐
ties in simulated GLAI (fig. 2a). Figure 2 demonstrates these
results using simulations from the fully calibrated FAO-56,
dense population, low nitrogen (FDL) treatment for data col‐
lected during the 2003-2004 growing season. As shown in
figure 2, assimilation of both GLAI datasets resulted in a
GLAI simulation that deviated from the model-only simula‐
tions of GLAI. We conclude that reliable estimates of GLAI
can be derived from spectral reflectance measurements of the
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Figure 1. Relationship between average measured green leaf area index
(GLAI) and average GLAI estimated from normalized difference vegeta‐
tion indices (NDVI) for the six standard FAO-56 treatments during the
(a) 2003-2004 and (b) 2004-2005 wheat experiments.

Figure 2. Example of simulated green leaf area index (GLAI) using “up‐
dating” and “forcing” data assimilation methodologies when GLAI was
(a) measured from biomass samples and (b) estimated from normalized
difference vegetation indices (NDVI) of the crop canopy. Model-only sim‐
ulated GLAI is shown for comparison.

Figure 3. Histograms of sampled parameter values using Monte Carlo methods for plant density in the (a) 2003-2004 and (b) 2004-2005 growing sea‐
sons and for (c) two parameters that define potential leaf size and (d) two parameters that define leaf area to weight ratios.
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crop canopy, and we can use those estimates to make reason‐
able adjustments to the GLAI state variable of the wheat
growth model over the course of its simulation timeframe.

MONTE CARLO SIMULATIONS

For Monte Carlo simulations to be useful, model parame‐
ters needed to be sampled from their respective normal dis‐
tributions enough times to adequately represent the domain
of possible outcomes. Our selection of 10,000 iterations was
rather arbitrary and was based mainly on the amount of time
required to run the model, but results demonstrated that the
selected parameter values adequately represented the sam‐
pling space and were normally distributed (fig. 3). For all the
parameters,  the percent differences between the requested
means (table 4) and the actual Monte Carlo sample means
were not greater than 0.3%. Likewise, the percent difference
between the requested standard deviations (table 4) and the

actual Monte Carlo sample standard deviations were not
greater than 1.6%. We conclude that 10,000 iterations of the
Monte Carlo procedure were adequate for selecting parame‐
ter sets that reasonably estimated the possible uncertainty in
the aspects of the model parameterization that most greatly
influence the GLAI simulation.

GLAI DATA ASSIMILATION

Monte Carlo simulations demonstrated two important as‐
pects of the data assimilation approaches, including reduc‐
tions in the variability of the model output as compared to
model-only simulations and improvements in the average
simulated model output as compared to measurements
(fig.�4). When the GLAI data assimilation approaches ac‐
complished one or both of these, we conclude that they offer
some value over using the model alone when considering the
potential for uncertainty in the model parameterization.

Figure 4. Average simulated final canopy weight (a and b), wheat yield (c and d), and evapotranspiration (e and f) when using no GLAI data assimilation,
GLAI data assimilation by “updating”, and GLAI data assimilation by “forcing” for the six experimental treatments during the 2003-2004 (left) and
2004-2005 (right) growing seasons. Treatments included FAO-56 (F) crop coefficient approaches for sparse (S), typical (T), and dense (D) plant popula‐
tions and high (H) and low (L) nitrogen rates. Error bars show the maximum and minimum simulation results when using Monte Carlo methods to
consider uncertainty in the model input parameters that affect GLAI. Measured values from field experiments are also provided.
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Simulations with the stand-alone model demonstrated the
model's sensitivity to uncertainty in the five input parameters
that were adjusted for each simulation, i.e., plant population
(PLTPOP), potential area of first-phase leaves (LAVS), po‐
tential area of second-phase leaves (LARS), laminar area to
weight ratio of first-phase leaves (LAWRS), and laminar
area to weight ratio of second-phase leaves (LAWR2). When
GLAI data assimilation was not used, simulations of final
canopy weight varied widely within individual treatments,
with much greater variation for sparse plant density treat‐
ments than for dense plant density treatments. For example,
final canopy weight for simulations without data assimilation
ranged from 3.3 to 11.7 Mg ha-1 for the FSH treatment in the
2003-2004 growing season, while the range for the FDL
treatment was 8.4 to 9.8 Mg ha-1 (fig. 4a). However, when
GLAI data assimilation based on remote sensing was imple‐
mented, the range of variability in final canopy weight was
substantially reduced for all treatments in both growing sea‐
sons (figs. 4a and 4b). For example, by “updating” the GLAI
state variable, final canopy weight was simulated from 7.9 to
11.1 Mg ha-1 for the FSH treatment and from 9.3 to 9.5 Mg
ha-1 for the FDL treatment in the 2003-2004 growing season
(fig. 4a). By “forcing” the GLAI state variable, final canopy
weight in the same growing season was simulated from 8.2
to 11.0 Mg ha-1 for the FSH treatment and from 9.3 to 9.5 Mg
ha-1 for the FDL treatment. These results demonstrate little
difference in the effects of “updating” versus “forcing” as‐
similation approaches on final canopy weight simulations,
which was expected since GLAI inputs for each method were
not largely different (fig. 2b).

Similar conclusions with regard to the variability in model
output can be drawn for yield (figs 4c and 4d) and for ET sim‐
ulations (figs. 4e and 4f). Typically, the variability in yield
and ET outputs tended to decrease from sparse to typical to
dense plant density treatments, and there was often relatively
little difference between the yield and ET simulations when
comparing the “updating” and “forcing” data assimilation
approaches. But most importantly, when using Monte Carlo
methods to consider uncertainty in the parameters that define
plant density and leaf growth characteristics, simulations
without GLAI data assimilation always resulted in greater
variability in yield and ET as compared to simulations that
incorporated GLAI data assimilation based on remote sens‐
ing. Thus, for applications in which uncertainty in these pa‐
rameters may be considerable, particularly those that
spatially extrapolate this one-dimensional model, estimates
of GLAI from remote sensing images may reduce the sensi‐
tivity of the model to these input parameters and may narrow
the possible range of outputs for canopy weight, yield, and
ET.

In addition to reducing variability in the model outputs,
data assimilation approaches also often improved the aver‐
age simulated model output in relation to measured values at
the field site. As an example for the FSH treatment in the
2003-2004 growing season, the errors between average mea‐
sured and simulated canopy weights were 1.9, 1.1, and
1.1�Mg ha-1 for model-only simulations, “updating” assimi‐
lation, and “forcing” assimilation, respectively (fig. 4a). For
FSH in the 2004-2005 growing season, these errors between
average measured and simulated canopy weights were 2.0,
0.3, and 0.4 Mg ha-1, respectively. The magnitude of the im‐
provement in the canopy weight simulations was lower for
other treatments, but generally the results demonstrated fa‐

vorable adjustments of the simulations to reduce error be‐
tween average measured and simulated canopy weights when
using the GLAI data assimilation approaches. For
2003-2004, FTL was the only treatment in which data assim‐
ilation approaches worsened canopy weight simulations
(fig.�4a), although only very slightly. For 2004-2005, FSL
was the only treatment in which data assimilation approaches
worsened canopy weight simulations (fig. 4b), although the
GLAI assimilation did bump the canopy weight in the ap‐
propriate direction with respect to the error between mea‐
sured and model-only values.

Data assimilation also improved average wheat yield sim‐
ulations as compared to measured values for most of the treat‐
ments in the 2003-2004 growing seasons. In particular, for
the FSH treatment, the errors between average measured and
simulated yield were 0.8, 0.3, and 0.4 Mg ha-1 for model-
only simulations, “updating” assimilation, and “forcing” as‐
similation,  respectively (fig. 4c). The only exception was the
“forcing” assimilation procedure for the FTL treatment,
which increased the error between measured and simulated
yield to 0.3 Mg ha-1, as compared to 0.2 Mg ha-1 for the mod‐
el-only simulations. Notice that for the FSH and FSL treat‐
ments, the stand-alone model tended to underestimate yield
and the GLAI assimilation techniques bumped the average
yield simulations upward, while for the FDH and FDL treat‐
ments, the stand-alone model tended to overestimate yield
and the GLAI assimilation techniques bumped the average
yield simulation downward. This result highlights how the
GLAI assimilation can adjust the simulation appropriately
based assessments of local crop growth conditions using re‐
mote sensing. Although data assimilation generally demon‐
strated positive effects on average wheat yield simulations
for the 2003-2004 growing season, results were less favor‐
able for the 2004-2005 growing season (fig. 4d). In the sec‐
ond year, GLAI data assimilation resulted in improvements
in average wheat yield only for the FDH treatment. In all oth‐
er treatments, the average wheat yield for model-only simu‐
lations more closely agreed with measurements, and both
assimilation approaches resulted in an overestimation of
yield. This is likely related to the fact that GLAI mainly in‐
fluences total canopy weight, through equations 4 and 5, but
many other parameters are involved in the simulation of ker‐
nel set, kernel size, partitioning of fixed carbon to grain, and
ultimately wheat yield. Because later fertigations caused
higher nitrogen stress levels in 2004-2005 (Hunsaker et al.,
2007a), yield simulations in this season were highly sensitive
to two parameters that govern nitrogen concentration in grain
and its effect on crop yield (Thorp et al., 2010). This aspect
of the simulation was likely the driver of 2004-2005 simu‐
lated yield and likely contributed to the poor performance of
the GLAI assimilation for yield in this season. In spite of this,
data assimilation substantially reduces the variability of
2004-2005 simulated wheat yields in response to uncertainty
in the parameters that drive the GLAI simulation.

Error between average measured and simulated ET was
reduced for many of the treatments in 2003-2004. As an ex‐
ample, for the FSH treatment in 2003-2004, the errors be‐
tween average measured and simulated ET were 3.3, 1.9, and
1.9 cm for model-only simulations, “updating” assimilation,
and “forcing” assimilation, respectively (fig. 4e). Only the
FTH treatment in 2003-2004 had higher error between aver‐
age measured and simulated ET, which resulted mainly from
an overcompensation of the assimilation approaches to re‐
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duce the simulated ET. In 2004-2005, the stand-alone model
tended to underestimate ET for all six treatments, and both
GLAI data assimilation approaches reduced error between
average measured and simulated ET for all six treatments
(fig. 4f). The data assimilation procedures also resulted in no‐
table reductions in the variability of the ET simulation in re‐
sponse to uncertainty in the parameters that drive GLAI. In
fact, the variability in ET simulations for the “forcing” meth‐
od is quite negligible for all the treatments in both seasons
(figs. 4e and 4f), indicating that this method has nearly elimi‐
nated the influence of the plant density and leaf growth input
parameters on the simulation of ET. These results demon‐
strate very favorable responses of the ET simulation to the
data assimilation approaches.

The ability of GLAI data assimilation to reduce error be‐
tween measured and simulated values for canopy weight,
yield, and ET as compared to model-only simulations was re‐
lated to two conditions (table 5). The first condition was
whether the GLAI data assimilation procedure increased or
decreased the GLAI integral (area under the GLAI curve) in
relation to that of the stand-alone model. The second condi‐
tion was whether the stand-alone model underestimated or
overestimated canopy weight, yield, or ET in relation to mea‐
surements. For example, simulations of final canopy weight
were brought closer to measurements in 83.1% of the cases
in which the stand-alone model underestimated final canopy
weight and data assimilation by “updating” increased the
GLAI integral. Given that higher GLAI leads to greater car‐
bon fixation (eqs. 4 and 5), we expected a high percentage of
simulations to be improved under these conditions. However,
when the stand-alone model already overestimated canopy
weight and “updating” assimilation further increased the
GLAI integral, canopy weight was improved in only 13.4%
of cases. When the “updating” assimilation decreased the
GLAI integral in relation to that of the stand-alone model, er‐
ror between measured and simulated canopy weight was re‐
duced for 65.3% of cases in which the stand-alone model
overestimated canopy weight but for 53.0% of cases in which
the stand-alone model had already underestimated the cano‐
py weight. As expected, simulations of canopy weight were
improved for a higher percentage of cases in which the stand-
alone model had overestimated the canopy weight and data
assimilation reduced the GLAI integral. This is likely the re‐
sult of reduced carbon fixation (eqs. 4 and 5) with lower simu‐
lated GLAI. As demonstrated in table 5, similar conditions
increased the chances of improving simulations of wheat
yield and ET using the “updating” and “forcing” GLAI as‐
similation approaches. In particular for ET, GLAI data assim‐
ilation was more likely to reduce error between measured and
simulated ET when the stand-alone model underestimated
ET and assimilation procedures increased the GLAI integral,
since higher GLAI increased the simulated potential evapo‐
transpiration (eqs. 6 and 7). Likewise, if the stand-alone
model overestimated ET, then improvements in the ET simu‐
lation were obtained more often when data assimilation re‐
duced the GLAI integral.

In summary, when the stand-alone model underestimated
final canopy weight, yield, or ET, the data assimilation ap‐
proaches were more effective when the assimilated GLAI
from remote sensing increased the simulated GLAI as
compared to the stand-alone model. Conversely, when the
stand-alone model overestimated final canopy weight, yield,

Table 5. Percent of cases in which GLAI data assimilation reduced
error between measured and simulated final canopy weight, wheat
yield, and evapotranspiration (ET) as compared to the stand-alone

model for conditions of underestimation (UE) or overestimation
(OE) by the stand-alone model and conditions of increasing

(INC) or decreasing (DEC) the GLAI integral.

GLAI
Integral

Stand‐Alone Model

Canopy Weight Wheat Yield ET

UE OE UE OE UE OE

“Updating” effect on GLAI
INC 83.1 13.4 62.7 4.6 87.7 46.8
DEC 53.0 65.3 44.9 79.4 10.0 78.1

“Forcing” effect on GLAI
INC 85.5 18.3 53.4 9.2 85.6 51.7
DEC 42.2 74.6 14.7 60.2 3.6 75.6

or ET, the data assimilation approaches were more effective
when the assimilated GLAI from remote sensing decreased
the simulated GLAI as compared to the stand-alone model.
Lending further support to the performance of the GLAI data
assimilation approaches is the fact that one of these two con‐
ditions was true for 77%, 72%, and 91% of the of the total
simulations for canopy weight, wheat yield, and ET, respec‐
tively. Thus, the data assimilation approaches tended to re‐
duced error between measured and simulated canopy weight,
yield, and ET as compared to the stand-alone model for a ma‐
jority of the total simulations. Overall, data assimilation by
“updating” improved simulations of canopy weight, wheat
yield, and ET for 66.6%, 53.7%, and 79.4% of the total simu‐
lations (10,000 Monte Carlo runs for each of the six experi‐
mental treatments in two growing seasons), respectively.
Likewise, data assimilation by “forcing” improved simula‐
tions of canopy weight, wheat yield, and ET for 69.6%,
43.3%, and 77.2% of the total simulations, respectively. Over
all the simulations, data assimilation by “updating” reduced
error between measured and simulated canopy weight, wheat
yield, and ET by 43.6%, 0.6%, and 56.5%, respectively, as
compared to the stand-alone model. Likewise, data assimila‐
tion by “forcing” reduced error between measured and simu‐
lated canopy weight, yield, and ET by 45.0%, -9.8%, and
51.6%, respectively, as compare to model-only simulations.

CONCLUSIONS
� Estimates of green leaf area index (GLAI), obtained

from spectral reflectance measurements of wheat cano‐
pies, can be used to alter the progression of CSM-
CROPSIM-CERES-Wheat  simulations by over-
writing the plant leaf area (PLA) state variable such
that the model computes GLAI as estimated from re‐
mote sensing.

� Monte Carlo methods were effective for testing the per‐
formance of GLAI data assimilation in light of uncer‐
tainty in the model parameters that govern the GLAI
simulation.

� Assimilation of remotely sensed GLAI into the CSM-
CROPSIM-CERES-Wheat  model improved simula‐
tions of final canopy weight, wheat yield, and
evapotranspiration  (ET) by improving the average sim‐
ulated model output in relation to measurements and by
reducing the variability of the model output as
compared to model-only simulations.
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� Assimilation of remotely sensed GLAI into the CSM-
CROPSIM-CERES-Wheat  model was more likely to
improve simulations of final canopy weight, wheat
yield, and ET when GLAI and the output variable were
both either underestimated or overestimated by the
stand-alone model.

� There was no apparent trend in the ability of the “updat‐
ing” assimilation technique to outperform the “forc‐
ing” assimilation technique, and vice versa.
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